The Mathcad Advisor

Tracing Iterations

Mathcad has functionality for tracing values in iterative calculations. This can show you the intermediate values of a calculation that you would never see in the worksheet, but which can give you a wealth of information about how a calculation is done, and, in some cases, why it goes wrong.

Any Mathcad value can be traced using the trace or pause functions. For more information on these functions, please see Mathcad Help or the November 2005 edition of the Advisor newsletter. 

To trace in a solver, put the trace or pause function in the body of the objective function. This will execute a trace as the function is called during each solver iteration, because this is how the solvers tell if they are getting close to a solution.

Notes: 

· To run these examples, you'll need to turn on Debugging. Enable the Debug toolbar by choosing Toolbars / Debug from the View menu. Select the button with the check mark to turn Debugging on. 

· It may help you to right-click on the Trace window and choose Clear All as you modify guess values. Type F9 while your cursor is on an expression to retrace it. 

Tracing in the root Function
The root solver is easy. Make the function for which you are finding a root into a small program with a trace statement, and it will return the value of the modified variable on each iteration through the root function.


Executing the two definition regions in a worksheet with debugging turned on should produce the following trace:

[image: image1.png]9339641822195
6699820911097
99922571612537
2331196261817
99999764800141
11655480530979
99999999811447
05827740171213
9999999999996
02913870085587




You can see that the first thing that the bracketed root function does is tries the value of f at both ends of the range, to make sure it changes sign. Then it tries a midpoint value, and works its way down from there.

You could copy and paste the numbers in the trace window to a vector and watch the solutions converge,

[image: image2.png]1934
2467
1999
273

itor =
2117
2058

202




[image: image3.png]last(ites)




[image: image4.png]



or examine where they fall on the function:

[image: image5.png]5
15 2 25 3

xiter




Even if the root is succeeding, you may wish to trace iterations where the calculation is taking a long time to converge. This could help you select better guess values.

Tracing in Solve Blocks
Solve blocks ending with Find are not much harder to trace. Insert the trace function into a program that also returns the desired value, and add this into any of the equations:

[image: image6.png]Given
x4 [taceC's= (0 7= (1) p) =24
5y

x-Tza
2

Rrace(x,y) = Find(x,3)




	[image: image7.png]



	Click Here to see traced values

	[image: image8.png]



	Click Here to see traced values


In the linear example above, you'll find that the guess values used don't really matter. You'll see that the Simplex method converges equally quickly regardless of where the guesses start, because they are only used to determine the size of the problem. 

Here's a trace on a nonlinear solver, which shows some checking and solving that goes on to select a nonlinear method: 

Click here to see traced values
[image: image9.png]Given

2
s

teace('x= (0}, 3= {1} x,3) =24
3y





First, the solver analyzes its constraint functions at the guess values. It then resets the guess values to a variety of sizes to check for areas of linearity. The guess values are reset to their original values, and the various solvers are tried. The first solver settles down in a short number of cycles. This is with Autoselect on, which chooses the Conjugate Gradient solver, since that one will eventually give an answer.

Right click on the above Find command and set the solver method to Levenberg-Marquardt; the trace shows that the solve block then skips the linearity checking and uses the chosen solver.

Counting iterations
You may wish to count the total number of iterations required by a solver. You can do this simply by counting lines in the Trace Window, or by copying and pasting the vector of results into Mathcad, and using the last or length functions to count the iterations. 

For other cases, you may wish to display an iteration counter on each line. This is particularly useful in the case where you are pausing at each iteration using the pause feature, or when you are running Minerr and you'd like to know when you've simply run out of iterations (2000), rather than converging on a solution within the specified tolerance. A counter may tip you off when it's time to stop and pick new guess values, or reformulate the problem.

The counter is implemented using a textbox control to hold on to the intermediate values of the iterations. Note that the control is defined as a function, with the input variable used as the argument to the output variable. This allows the counter to be called within a program loop.

[image: image10.png]counter(reset) =

seset




The following is the script used in the counter function:

[image: image11.png]Given

x+ [trace("iteration (0, x= {1}, 7= (2}" ,countex(® x,3) =24

3y

-0
2

0171
0857

Find(x,)





Finally, reset the counter to 0 before rerunning the trace, or using it in a new trace.

[image: image12.png]



Acknowledgements: Many thanks to Stuart Bruff for his implementation of the counter control.
